

Asteroid Defense Modeling

Applied Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, October 14, 2014

Asteroid Sizes

L.A. vs Churyumov-Gerasimenko (ESA Rosetta lander 2014)

Duende Chelyabinsk

Paris vs. Itokawa (Japanese sample return 2005)

- Duende (2012 DA14) passed closer than GEO
- Chelyabinsk Meteor (estimated size)
 - 1500 people hospitalized mostly due to broken glass

Near Earth Objects

Does not include comets and other longperiod Earth crossing objects!

- Comets often have Trans-Neptune aphelion
- Speeds up to ~80 km/s

Estimated Effects

Type of Event	Typical Diameter	Average Impact Energy (MT)	Average Interval (yrs)
Airburst	25 m	1	200
"City Killer"	50 m	10	2000
Regional catastrophe	140 m	300	30 000
Continental catastrophe	300 m	2000	100 000
Global catastrophe	1 km	100 000	700 000
Mass extinction	10 km	100 million	100 million

- Impact energies can vary significantly with NEO composition and trajectory
- Probability of large strike in near future very small, but consequences very severe.
- We have the capabilities to detect and mitigate most Near Earth Object threats

Chelyabinsk

- $19.16 \pm 0.15 \text{ km s}^{-1}$
- Entry angle 16° to horizon
- Airburst began at 29.7km
- Estimated Ø20m, 12 tonnes
- ~500 kT TNT = 25 Hiroshima size atomic bombs
- Ø1m fragment recovered from Lake
- Ordinary Chondrite w. 10% iron

- 1500 injuries mostly from broken gl (20 bassurns from radiation)
- 7000 buildings damaged
- Chelyabinsk city population 1.1M
- What if iron meteor or near vertical entry directly over city?

Why model impacts?

- Current state of the art simulations suggest impacts especially at the "City Killer" size are significantly more damaging than previously estimated!
- Physical mechanisms of airburst unknown. Several theorized but none compared to experiment.
 - Pure mechanical failure
 - Flashing of trapped volatiles
 - Combustion of ablated material
- Determining best estimates of threat and sensitivity to variables can help in decision making of trade-offs of detection and mitigation strategies.

NASA Risk-Informed Decision Support

- Probabilistic Risk Assessment (PRA) provides quantitative evaluation of risk levels, drivers, and mitigation options
- Asteroid defense problem involves many high uncertainties
 - Characterization: numbers, sizes, compositions, etc.
 - Impact: level of threat various types of asteroids could pose
 - Mitigation: how well various defense strategies could reduce key threats
- Risk-informed decision support:
 - Risk assessment determines sensitivity of risk to key uncertain parameters
 - Enables resources to be allocated intelligently and efficiently
- Applications to multiple aspects of asteroid defense:
 - What level of defense system is warranted by the level of risk?
 - What asteroid/threat characteristics drive greatest risks?
 - What type of defense systems would most effectively/efficiently mitigate those risks/characteristics?

PRA provides value by providing quantitative answers to specific questions

Physics-Based Risk Analysis Capabilities (Images)

Breakup

CTH Ares vehicle breakup simulations

ALE3D tank plate burst/fragmentation

LS-DYNA Apollo capsule structural response

Impact

CTH simulation of hypervelocity impact into PICA TPS

Hydrocode and Particle-in-Cell simulations of Plasma/ EMP generation from highvelocity meteoroid impacts

Blast Propagation

OVERFLOW simulations of blast wave propagation and interaction

ALE3D simulation of tank air-burst over ground structures

Compositions

- Iron meteorite ~6% of meteorites
 - Fe-Ni alloys: Kamacite (5–10% Ni, 90–95% Fe) or Taenite (20–65% Ni)
 - Solid with little void space
- Stony-Iron meteorites
 - Olivine (Mg₂SiO₄) in Fe-Ni matrix
- Chondrites (Stony) ~75% of meteorites
 - Fe-Ni (0–20% by mass), Olivine (Mg₂SiO₄), Bronzite (Mg 88%,Fe 12%)SiO₃, Pyroxene XY(SiAl)₂O₆ X=Fe,Mg Y=Al,Fe,Mg
 - Porosity ~10% but up to 60%, round grains (chondrules)
- Carbonaceous Chondrites ~5%
 - Fe-Ni, Magnetite (Fe_3O_4), Sulfates ($FeSO_4$, $Fe_2(SO_4)_3$, MgSO₄), lce (0–20%), amino acids, polycyclic aromatic hydrocarbons.
 - Porosity ~25%
- Achondrites ~8%
 - Same as chondrites but basalt texture due to melt/recrystallization
- Comets
 - Silicates (Stony) ~25%, H₂O ~30%, Carbonaceous volatile ~10%, Carbonaceous non-volatile ~25%, other ices ~10% (CO, CO₂, methane, ammonia)
 - Highly porous. Speeds up to 80 km/s (often from Trans-Neptune aphelion)

Simple Break-Up Models

Impact Energy Estimates

- Estimates of impact energy from observed damage vary widely. Tunguska estimates vary from 3 700 MT, with 10 40 most widely quoted.
- Yields typically derived from comparison to nuclear detonations. Boslough 2008 showed the downward momentum transferred by the asteroid significantly increased the damage compared to a static burst: e.g. a 3 MT burst was sufficient to create Tunguska-like damage.

 Caveat: Simulations forced an instantaneous vaporization airburst and did not model the physics of the burst.

Boslough 2008 – Low altitude airbursts and the impact threat

Airburst Mechanisms

- Mechanical break-up
 - Tensile, bending, compressive strengths exceeded
 - Due to cracks, strength of rock typically decreases with size => break-up will occur in stages as fragments more resistant to further break-up

ALE3D

- Developed by LLNL
- Arbitrary Langrange Eulerian
- Multi-physics

- Explicit/Implicit time integration
- Multi-phase
- Element erosion
- Smooth particle hydrodynamics
- Overset grids
- Parallelized
- Unix/Windows

https://wci.llnl.gov/codes/ale3d/about_ale3d.html

ALE3D

ALE3D is a single code that integrates many physical phenomena

Applications useful to asteroid impact modelling

- hydrodynamic ram
- multi-phase flow
- Incompressible flow
- blast loading of structures
- aero-structural effects
- penetration mechanics
- non-eroding deformable penetration

https://wci.llnl.gov/codes/ale3d/about_ale3d.html

Lagrangian Phase

ALE3D methods

distortion

Material Models

- Many material models:
- Equations of state
- Stress-strain models
- Anisotropy
- Fracture/Failure/Damage models
- Voids
- Chemistry and phase change

Mesh Generation

- Internal Mesher for simple geometries
- Truegrid (XYZ Scientific)
- Cubit (Sandia National Lab)

Particle Pack

Gravitational Aggregate

Application to Asteroid

- Inhomogenous materials
- Grains of varying sizes and shapes
- Inhomogenous fracture strength
- Voids
- Automated generation and meshing

Two-Phase Flow

- Hydrodynamically driven particles
- Ablation
- Afterburning
- Shock-induced mixing of gases and solids
- Complex EOS

MHD

- Magneto-Hydrodynamics (MHD)
- MHD module solves the transient magnetic advection-diffusion equation, magnetic forces are coupled to hydrodynamics and Joule heating is coupled to heat transfer.

ERAM test

Hydrodynamic ram of steel cylinder through water

- Experiment used a tank of water with thin walls except thick concrete floor and back.
- ALE3D neglect all walls and do axisymmetric simulation

ERAM test

Lundstrom, E. and Anderson, T., "Hydraulic Ram Model for High Explosive Ammunition", ASME Pressure Vessels and Piping Conference, 1989

Break-up

Break-Up (Wider View)

Blast Wave

Forcing Burst

Mechanical Only

- 5% Energy Added Uniformly
- 5% Energy Added to a few locations in the Asteroid

Energy addition ± Fracture

- 10% energy addition
- No fracture mechanism

- 50% energy addition
- Fracture modelled

Rubble Pile

- Modelled Eulerian
- Change to Lagrangian to prevent merging of boulders
- Fill void space with regolith (porous, no strength, rock "dust")

Simple ALE3D Model

- Initial assumptions
 - Ideal gas atmosphere
 - Homogeneous generic rock with low fracture strength

Future ALE3D Work

Link to/from TPS branch simulations?

Link to/from

- Improved Atmosphere Model
 - Multi-component mixture (O₂, N₂, etc)
 - Dissociation and Ionization in shock/boundary layer
 - Improved convective and radiative heat transfer
- Improved Asteroid Model
 - Improved fracture and porous crush models
 - Inhomogenous mixtures (Iron, Stone, Ice)
 - Melting and vaporization
 - 3D: Variation in shape and composition, tumbling
- Higher resolution on asteroid (Chimera grids)
- Tracking of blast/shockwaves